

November 15 -17, 2005: Town & Country Convention Center - San Diego, CA

Network Rationalization (NR)

Mike Davis

SCN Coordinator and Afloat Rationalization PEO C4I & Space – PMW 160.TD.1 16 November, 2005

Agenda / Topics

- Understanding the problem
- PMW 160 mission and focus
- Enterprise Network Vision
- Network Rationalization
- Network study/verification
- Summary

Only as a TEAM will we provide effective network services

Understanding the Problem Current Network Environment

- Wide proliferation of networks
 - Up to 50+ separate networks on a ship
 - Multiple claimancies
 - High life cycle costs and sysadmin requirements
 - Sporadic, slow, and expensive tech refresh
 - Inconsistent application of Information Assurance
 - Physically separate security enclaves (MLS Solutions not widespread)
- Result
 - Interoperability Issues
 - Significant challenges Cost intensive
 - E2E Configuration management ineffective
 - Barrier to FORCEnet and NCES migration

Why Can't We Migrate to an Enterprise Network Architecture?

Why is this Happening?

- Narrow view of warfighter's application environment
 - Stove-piped instead of integrated environment
 - Hundreds of disparate applications/connections to support (PPL/SSIL)
- Perception Networks are "easy"
 - Anyone can build one
 - Limited understanding of support and lifecycle costs
- Policy? CONOPS? Operational differences?
 - No universal set of network requirements
 - Various network providers competing, different standards, performance objectives, etc.
- Perception CFE saves money (especially in SCN)
 - Lower integration cost ≠ Lower life cycle cost

Commonality Across the Network Spectrum Needed

FY-06 Numbered Fleet Top Ten Requirements

(areas which will benefit from

network collaboration)

R 041359Z OCT 05 COMSECONDFLT

***it was clear that the <u>overarching need</u> is to <u>apply the standards, redundancy, and</u> <u>reliability of weapons systems to the fleet's</u> communications and <u>information systems</u> ***

- 1. Coalition communications
- 2. Reliable SATCOM
- 3. Standards (see excerpt below...)
- 4. Lack of adequate data throughput
- 5. Computer network defense (CND).
- 6. Common operational picture (cop).
- 7. Real-time collaboration
- 8. Streamlined process to support emergent ops
- 9. Next generation knowledge management
- 10. Incorporate wireless technology.
- (3) Standards. ..information systems are critical war-fighting infrastructure and <u>require</u> operating, training and maintenance standards equivalent to those in weapons systems.... (a) .. significantly more rigor in <u>development of procedures and training</u>...there should be <u>uniform</u> configuration and procedures throughout the navy infrastructure. (aka COMMONALITY!)

PMW 160's Mission Managing the Afloat Network Enterprise

	Ap	plicat	tions		
	GCCS-M		NTCSS		09,
	METOC		NTDPS		nt,
6 160	Enterprise Services 160				ner
Š	Messaging	160	Email/Browser	160	er
	Office Automation	160	Chat	160	S
	Directory	160	Storage	160	19
1SS		Video	160		19
Info Assurance		Netwo	rks		X
6	Shipboard Networks 160				
4	HM&E Network		Combat Systems Network		Network Management
		ADN	S 160		×
	7	ransp	ort		

PMW 160 is responsible for most of the Afloat C4I Architecture

PMW 160 Programs / Projects

Afloat Networks

ISNS

ADNS

SCI Networks

SubLAN

CENTRIXS-M

VIXS

Workstations (PCs)

CRYPTO & Key Mgt.

KG-3X

KG-40AR

DMS Infosec CAW

Crypto Products

EKMS

PKI

Identity Management

(Biometrics)

Secure Voice

Crypto Mod

Enterprise Services

DMS

Tactical Messaging

NGDS

NMCP

COMPOSE

TDAMS

Network Management

Naval Regional Enterprise
Messaging (NREMS)

Network Security

JCDX

CND

CDS

DII Guards

IA Readiness Services

NMCI IA

Radiant Mercury

Each program / project has E2E acquisition support including: LCS/ILS, EoL, ISEA support, and cross-functional integration.

PMW 160 Road Map

Advancing and integrating capabilities

ENTERPRISE NETWORK VISION

- Network class convergence
 - IT21 "C4ISR" Network
 - HM&E "Control" Networks (SmartShip)
 - Combat System "C&D" Networks
 - Nuclear Propulsion Network
 - Other Applications/Systems (Aviation, Medical, IC/voice, Embarkables, etc)
- Network Security Enclave Convergence (Multi-level security / Cross Domain Solutions)
 - Unclass
 - Secret (including coalition)
 - Top Secret
 - SCI
- VVD Convergence
 - Voice
 - Video
 - Data

<u>UNIFORM network services provider(s)</u>
E.g. afloat ISPs providing common "hotel services"

What is being done about "Optimizing the Network"?

Enterprise Network Implementation

Network Assessment Activities

- SPAWAR 05's Network Consolidation Study #2,
 - As directed by ASN RDA, M&S effort will focus on big-deck amphibious assault ships.
- PMW 160's Network "Deep Dive" Efforts
 - Technical look at the network's "roadmap" and the "as-is" afloat networks.
 - Survey/Study will include a review of enterprise/whole ship requirements.
 - Leading an overarching "network rationalization" initiative
- Finalizing CPD/CDD for ISNS Increment 2 & 3

We're TEAMING and need your inputs!

Establishing a Network Enterprise Basic "Network Rationalization" Intent

Hypothesis: There is a "best" most effective way to provision networks afloat,

- ... based on <u>resolving user issues</u> and fully <u>enabling E2E</u> <u>information exchange globally</u> (previous studies/surveys and NCW/FCL reqs),
- ... where the <u>network equation has many threads</u> that need to be at least considered in any solution (e.g., E2E LCS and DOTMLPF elements, so the full impact and costs are known afloat and ashore),
- ... providing <u>quantifiable</u> <u>information superiority</u> <u>benefits</u> and future capability enhancements to all users, and

the best way to get there is close <u>teamwork</u> in a <u>combination of</u> <u>federation</u>, <u>effective consolidation and transparent network</u> <u>services</u> (which mimics utility/hotel services)

Network Rationalization (NR)

Definitions and Functional Decomposition

NR = Network Services + Systems Management

Network Services = business rules, CM, standards, etc

System Management = Interfaces, reqs, Prg. Mgmt, ETC!

Network Rationalization (NR) Overall Precepts/Tenets

- •<u>Mission</u> Quantify the afloat network reference architecture and offer those capabilities in a collaborative network services environment
 - •NR is an overarching approach to systematically achieve the challenge of providing a "best value" in mission critical network services with common hardware, software, processes, interfaces/standards, QoS & requirements.
- Objective Provide reliable, efficient and effective network services for all classification levels for mission critical systems on all afloat platforms while:
 - (1) providing dynamic response IAW the commanders intent with emergent battle space needs,
 - (2) enabling FORCEnet where the discovery and cooperation of services from disparate organization are fielded at different times, and
 - (3) transition to a full network services model through a combination of federation, consolidation and integration/convergence.
 - (4) Federation would have Two phases: (1) FIX WHAT'S BROKE & provide consistent services and (2) Formalize Federation R&R/ROE/MOA

Rationalization/Optimization Goals

- (1) REDUCE: manning, footprint, hotel services, LCS elements, TCO/LCC
- (2) *INCREASE:* interoperability, defense in depth, mission effectiveness and potential for added capabilities
 - Reduced System Administration Workload
 - Configuration Management CONOPS & Control
 - Greater & More Uniform Security
 - Tech Refresh & Simplified Refresh
 - Lower Lifecycle Costs Across the Board
 - Cross-Domain Solution/Coalition support
 - Improved connectivity management
 - Facilitate SOA/NCES/CFn implementation
 - Reduced documentation effort (C&A, EA/views, etc)

160 Network Study & Survey

Overview

- Survey intended to be all inclusive to verify and document all aspects of afloat networks.
 - Starting with the re-discovery "as-is" phase of "NR" until key definitions and major NR objectives are framed and answered which validate the "to-be" model.
- Deliverables: Phase one reference architecture model, implementation methodology and survey instrument. Phase two – updated model, shipboard survey assessments, & initial AoA/BCA.

Overall Approach

- Capture the various networks and corresponding network performance requirements
- Identify Common Services across networks/applications
- Rank networks/systems by risk of integration/convergence
- Propose a reference network architecture model
- Verify assumptions and model through shipboard verifications
- Recommend SCN and backfit rationalization opportunities
 - Based on an initial AoA/BCA (with a rough manpower/cost ROI)

PMW160 Network Study Approach

1. Identify all the various networks and corresponding network performance requirements

Identify all critical performance elements/parameters

(example - ISNS Performance Requirements (Partial list *))

Requirement	Threshold	Objective
Operational Availability (A _o)	≥ 95%	≥ 99%
Interoperability	100% of Critical IERs are satisfied	100% of Critical and Non-Critical IERs are satisfied.
Time taken for two workstations to transfer files to each other via the shipboard network. (2.5 Megabyte File)	<u><</u> 1 min.	< 20 sec.
Time taken for workstation to transfer files from one of the servers via the shipboard network. (2.5 Megabyte File)	<u><</u> 1 min	<u><</u> 5 sec.
Average Bandwidth utilization of the link between the servers and the backbone switch over the period of 24 hours. (Peaks may exceed threshold for no more than 5 minutes per hour)	≤ 66%	≤ 33%

PMW160 Network Study Approach

2. Identify Common Services across networks & applications (based on NESI, OACE, NCES)

PMW160 Network Study Approach

3. Rank by risk of integration / convergence

- Federation
- Consolidation
- Network Hotel Services

Sample opportunity &

suitability Matrix

Relative risk potential (9)

Critical discriminators

- (1) Cable/Fiber type (i.e., single-mode, multi-mode)
- (2) Network architecture (e.g., FDDI, ATM, Gig-e)
- (3) Operating systems (e.g., Unix, Windows, VXwroks)
- (4) Performance/Quality-of-Service (e.g., latency, real time, Ao)
- (5) Class of Network (unclass, coalition, NOFORN, etc)
- (6) Certifications required (i.e., C&A, WPNs)
- (7) Environment (HM&E, WPNS, external)
- (8) System engineering complexity (coupling, IA, etc)

Engage programs & networks based on lowest risk first

What's in this for Users/Stakeholders?

ONE focused network service provider TEAM

- One stop shopping for capabilities and issues
- Concentrated program management focus and effort

Reduced resources

- Manpower reductions afloat beyond just automation
- Less TCO in LCS much more commonality
- Network services provided as "hotel services"

More reliable information transfer globally

- Consistent interoperability and strategic focus
- Focused concentration on DoD/Federal interfaces
- More complete and assured "defense in depth"

Added mission capabilities and effectiveness

- Enables NCW/FCL level three capabilities and beyond
- Supports new "killer" apps and personal all-in-one devices
- Morphs network services into a transparent commodity

Our TEAM takes care of the network, so you concentrate on business

Summary/Recommendations

- Embrace NR need & approach
- Collect facts/data Conduct M&S & shipboard surveys
- Way forward engage teammates & build consensus
- Deliverables define key items and plans
- Collectively Answer the mail
 - "R 041359Z OCT 05 COMSECONDFLT ... apply the standards, redundancy, and reliability of weapons systems to ..information systems..."
 - Enhanced readiness, current and future, affordability
 - STANDARDS, manpower effectiveness (reduction), streamlined processes

Suggestions and Questions?

Back-Up Slides

NR must enable NCW/FCL Capability levels

FORGETIGE

SCN / CVN21 target

Through: Commonality, validated NETWORK requirements, secure

interoperability

Based on Fn Concept **Document**

Full IT21

"Online"

- •IP Reach Back
- Local Area Networks
- Wideband Receive
- •RF Management
- Survivable comms

Level 0

Net Connected

"Improved decision making"

- Web-based services
- Improved network reliability and performance
- Increased bandwidth
- Improved coalition operations and data sharing
- Tailorable situational awareness tools
- Standardized data exchange between domains
- Defense in depth

Level 1

Net Enabled

"Network based command and control"

- Multi-path and improved transport reliability
- Dynamic bandwidth mgmt
- Customized applications and data sources
- Common infrastructure and data exchange standards
- Improved data exchange across domains
- Enterprise management for asset analysis and repair
- Initial knowledge management and automated decision aids
- Assured sharing
- Distributed command and control operations
- Modular and open architecture

Level 2

Fully Net Ready

"Decision-making under undesirable conditions"

- Robust, reliable communication to all nodes
- Reliable, accurate and timely information on friendly, environmental, neutral and hostile units
- Storage and retrieval of authoritative data sources
- Robust knowledge management capability with
- direct access ability to raw data User-defined and shareable SA
- Distributed and collaborative
- command and control Automated decision aids to enhance decision making Information assurance
- Seamless cross-domain access and data exchange.
- Interoperability across all domains and agencies
- Autonomous and disconnected operations
- Automatic and adaptive diagnostic and repair
- Modular architecture to expedite new capabilities

Level 3

FY14 FY07 FY10 Today MM/DD/YY - 25

FORCEnet Network Elements

IT-21—The Navy Warfighting Network

7

- Shipboard LANS, C4I Equipment
- Shore Connectivity Elements
 - NCTAMS/NCTSs
 - Fleet NOCs
 - DoD Teleports/STEP Sites

PMW160 Charter

Implement an integrated, interoperable network infrastructure as well as basic network management and information distribution services afloat.

BLII OCONUS (ONE-NET)

 Shore Based User Workstations, Servers, LANs, WANs— OCONUS except Hawaii

NMCI

 Shore Based User Workstations, Servers, LANs, WANs— CONUS and Hawaii

PMW160 provides more than just the physical networks; we synchronize capabilities across the Naval Enterprise

Challenges & Opportunities Towards providing common services

Overall DoD funding scarce and decreasing

GWOT, Katrina, competing priorities, IT commodity perception

Multitude of similar yet disparate networks

Stove-piped programs diverse funding lines, timelines and requirements

Competition between network service providers

How to foster commonality, yet preserve the benefits of a few sources

Unified set of top-down, overall network requirements

Proliferation of capabilities exist (NCW/FCL), yet not parsed to networks

Commonality, commonality, commonality

Parts, processes, CONOPS, standards, tools, CM, 3M, comms, etc...

Collectively transition each challenge into a DoN opportunity

NR Relationships

Rationalization has many inter-related threads and variables

NR team's approach must collectively accommodate key elements

Notional "NR" approach

Integrate several methodologies/approaches: (1) Federation, (2) consolidation, and (3) full network services provider

NR Elements / Deliverables

(efforts needed to transition "as-is" to "end-state")

Collaboration required to achieve commonality & economies of scale

Network Rationalization (NR) Functional Approach

Functional areas (and "LANs" therein) will have several

> **Networks** Services/clients C3/off-ship

- Functional areas (aka "LANs") will have their own data/info requirements as well as Pop/backbone interfaces and external connectivity (ADNS / BSN)
- Application and network "Services" and interfaces therein need to follow common business rules and adapt to standards and protocols to facilitate backbone and external interface regs...
- Key overall driver is "commonality" of parts, rules, and processes AND leverage existing elements (PPL, logistics/training/LCS, etc..)

Transformation Potential with ISNS INC III

Deliver the Fleet's Afloat C4I Network by improved speed of information flow and assured information access by enabling the tactical edge services:

- Placing all C4I users on a protected network
 - Establishes Tactical Enterprise Services
 - Ensures Warfighter access to the information they need

Increased network speed and access

- Fully integrated V/VOIP fully enable IP convergence
- Transformational client architecture
- Tactical Edge Services for integrated afloat/shore SOA's

A "One Stop Shop" for shipboard network capability

- Consolidates networks, hardware and software
- Increases network efficiency and supportability
- Reduces network costs, including all O&S/OMN aspects

Paradigm shift – C4I applications only bring "delta" software

Naval Networks Info(motion Assurance Enterprise Services

PEO IWS

OPNAV 07 and **71**

Network Stakeholders

ASN RDA TD NNWC – N6/EA/Networks Lead

PEO C4I (100/700s PMs &TDs)

DON OACE

NAVSEA/HM&E PMs NAVAIR – Various Network PM(s)?

CNO 75 and 76 PEO Ships

PEO Carriers Naval Reactors

PMs for SCN hulls: DDG(X), LCS, LPD-17, CVN-21 & also DCGS PM

SURFPAC/SURFLANT EMO/N43 and FTSC/RMC and FSET

NSWC Dahlgren NSWCDD – CNI, SACC-A

DARPA/NRL and/or JHU/APL DISA/NSA/other federal agencies

PEO C4I - PMW 140, 150, 170, 180, 190... PMW 750, 760, 770, 790

SURFPAC/SURFLANT EMO/N43 and FTSC/RMC and FSET

For C4I/Network overviews - ISEA(s), Fleet NOCs, BG staff N6's, etc

Major "NR" Technical Elements

-- EA: NESI /FSI /FIT and OACE & DoDAF /ISP /IER (? supported by a

"JCD" ?) & Network Strategy / Roadmap (GIG, JBMC2, C4I)

-- Core: (1) Services (Definition, Commonality) & (2) Processes (CM, COOPS,

OPTASK, etc) AND GIG transparency (IA, NCES, BE, JTRS, TSAT, Teleport)

Target Shipboard Network Consolidation Levels

<u>Level 1</u>
Common Cable
Plant

<u>Level 2</u>

Common Standards

Level 3 Common

Infrastructure

Level 4

Connected Network

Level 5

Converged Network

- Shared tube plant, fiber, cables
- Shall integrate the required network cabling with the ship's existing fiber cable plant.
- Distinct networks will use their own individual fibers within common cable conduit or multi-strand fiber cables and may share fiber interconnection and drop boxes
- Active network components (routers, switches, hubs, servers, workstations, etc.) all adhere to a common set of identified standards
- Standards detailed in the FORCEnet Architecture and Standards document
- Increases potential for interoperability between system, once greater levels of interoperability and consolidation (Level 3-5) are pursued.

- Network components are of common manufacture to installed, inservice and supported IT network system(s)
- Networking components
- PC / Server hardware
- Software apps, standardized
- Network
 Management and
 IA toolsets

- Controlled network connections to other shipboard networks.
- Physically and logically connected
- Leverages
 commonality with
 other shipboard
 networks and
 provides increased
 connectivity
 supporting various
 network centric
 warfare and
 FORCEnet
 objectives.

- Most preferred level of consolidation.
- Consolidated network design integrates all network requirements into one of the four functional IT network infrastructures.
- Network system's requirements are met by integrating with and/or expanding an existing functional IT network infrastructure using network components of common manufacture.

MM/DD/YY - 34